Towards Agile Robots: Intuitive Robot Position Speculation with Neural Networks

26 Feb 2024  ·  Yanlong Peng, Zhigang Wang, Yisheng Zhang, Shengmin Zhang, Ming Chen ·

The robot position speculation, which determines where the chassis should move, is one key step to control the mobile manipulators. The target position must ensure the feasibility of chassis movement and manipulability, which is guaranteed by randomized sampling and kinematic checking in traditional methods. Addressing the demands of agile robotics, this paper proposes a robot position speculation network(RPSN), a learning-based approach to enhance the agility of mobile manipulators. The RPSN incorporates a differentiable inverse kinematic algorithm and a neural network. Through end-to-end training, the RPSN can speculate positions with a high success rate. We apply the RPSN to mobile manipulators disassembling end-of-life electric vehicle batteries (EOL-EVBs). Extensive experiments on various simulated environments and physical mobile manipulators demonstrate that the probability of the initial position provided by RPSN being the ideal position is 96.67%. From the kinematic constraint perspective, it achieves 100% generation of the ideal position on average within 1.28 attempts. Much lower than that of random sampling, 31.04. Moreover, the proposed method demonstrates superior data efficiency over pure neural network approaches. The proposed RPSN enables the robot to quickly infer feasible target positions by intuition. This work moves towards building agile robots that can act swiftly like humans.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here