Toward Data-Driven Glare Classification and Prediction for Marine Megafauna Survey

Critically endangered species in Canadian North Atlantic waters are systematically surveyed to estimate species populations which influence governing policies. Due to its impact on policy, population accuracy is important. This paper lays the foundation towards a data-driven glare modelling system, which will allow surveyors to preemptively minimize glare. Surveyors use a detection function to estimate megafauna populations which are not explicitly seen. A goal of the research is to maximize useful imagery collected, to that end we will use our glare model to predict glare and optimize for glare-free data collection. To build this model, we leverage a small labelled dataset to perform semi-supervised learning. The large dataset is labelled with a Cascading Random Forest Model using a na\"ive pseudo-labelling approach. A reflectance model is used, which pinpoints features of interest, to populate our datasets which allows for context-aware machine learning models. The pseudo-labelled dataset is used on two models: a Multilayer Perceptron and a Recurrent Neural Network. With this paper, we lay the foundation for data-driven mission planning; a glare modelling system which allows surveyors to preemptively minimize glare and reduces survey reliance on the detection function as an estimator of whale populations during periods of poor subsurface visibility.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here