Toward a Geometric Theory of Manifold Untangling

7 Mar 2023  ·  Xin Li, Shuo Wang ·

It has been hypothesized that the ventral stream processing for object recognition is based on a mechanism called cortically local subspace untangling. A mathematical abstraction of object recognition by the visual cortex is how to untangle the manifolds associated with different object category. Such a manifold untangling problem is closely related to the celebrated kernel trick in metric space. In this paper, we conjecture that there is a more general solution to manifold untangling in the topological space without artificially defining any distance metric. Geometrically, we can either $embed$ a manifold in a higher dimensional space to promote selectivity or $flatten$ a manifold to promote tolerance. General strategies of both global manifold embedding and local manifold flattening are presented and connected with existing work on the untangling of image, audio, and language data. We also discuss the implications of untangling the manifold into motor control and internal representations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here