Paper

Topologically Regularized Multiple Instance Learning to Harness Data Scarcity

In biomedical data analysis, Multiple Instance Learning (MIL) models have emerged as a powerful tool to classify patients' microscopy samples. However, the data-intensive requirement of these models poses a significant challenge in scenarios with scarce data availability, e.g., in rare diseases. We introduce a topological regularization term to MIL to mitigate this challenge. It provides a shape-preserving inductive bias that compels the encoder to maintain the essential geometrical-topological structure of input bags during projection into latent space. This enhances the performance and generalization of the MIL classifier regardless of the aggregation function, particularly for scarce training data. The effectiveness of our method is confirmed through experiments across a range of datasets, showing an average enhancement of 2.8% for MIL benchmarks, 15.3% for synthetic MIL datasets, and 5.5% for real-world biomedical datasets over the current state-of-the-art.

Results in Papers With Code
(↓ scroll down to see all results)