Topological AI forecasting of future dominating viral variants

7 Sep 2022  ·  Guo-Wei Wei ·

The understanding of the mechanisms of SARS-CoV-2 evolution and transmission is one of the greatest challenges of our time. By integrating artificial intelligence (AI), viral genomes isolated from patients, tens of thousands of mutational data, biophysics, bioinformatics, and algebraic topology, the SARS-CoV-2 evolution was revealed to be governed by infectivity-based natural selection. Two key mutation sites, L452 and N501 on the viral spike protein receptor-binding domain (RBD), were predicted in summer 2020, long before they occur in prevailing variants Alpha, Beta, Gamma, Delta, Kappa, Theta, Lambda, Mu, and Omicron. Recent studies identified a new mechanism of natural selection: antibody resistance. AI-based forecasting of Omicron's infectivity, vaccine breakthrough, and antibody resistance was later nearly perfectly confirmed by experiments. The replacement of dominant BA.1 by BA.2 in later March was predicted in early February. On May 1, 2022, persistent Laplacian-based AI projected Omicron BA.4 and BA.5 to become the new dominating COVID-19 variants. This prediction became reality in late June. Topological AI models offer accurate prediction of mutational impacts on the efficacy of monoclonal antibodies (mAbs).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here