Time topological analysis of EEG using signature theory

6 Apr 2024  ·  Stéphane Chrétien, Ben Gao, Astrid Thebault-Guiochon, Rémi Vaucher ·

Anomaly detection in multivariate signals is a task of paramount importance in many disciplines (epidemiology, finance, cognitive sciences and neurosciences, oncology, etc.). In this perspective, Topological Data Analysis (TDA) offers a battery of "shape" invariants that can be exploited for the implementation of an effective detection scheme. Our contribution consists of extending the constructions presented in \cite{chretienleveraging} on the construction of simplicial complexes from the Signatures of signals and their predictive capacities, rather than the use of a generic distance as in \cite{petri2014homological}. Signature theory is a new theme in Machine Learning arXiv:1603.03788 stemming from recent work on the notions of Rough Paths developed by Terry Lyons and his team \cite{lyons2002system} based on the formalism introduced by Chen \cite{chen1957integration}. We explore in particular the detection of changes in topology, based on tracking the evolution of homological persistence and the Betti numbers associated with the complex introduced in \cite{chretienleveraging}. We apply our tools for the analysis of brain signals such as EEG to detect precursor phenomena to epileptic seizures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here