Time-Consistent Asset Allocation for Risk Measures in a Lévy Market

16 May 2023  ·  Felix Fießinger, Mitja Stadje ·

Focusing on gains instead of terminal wealth, we consider an asset allocation problem to maximize time-consistently a mean-risk reward function with a general risk measure which is i) law-invariant, ii) cash- or shift-invariant, and iii) positively homogeneous, and possibly plugged into a general function. We model the market via a generalized version of the multi-dimensional Black-Scholes model using $\alpha$-stable L\'evy processes and give supplementary results for the classical Black-Scholes model. The optimal solution to this problem is a Nash subgame equilibrium given by the solution of an extended Hamilton-Jacobi-Bellman equation. Moreover, we show that the optimal solution is deterministic and unique under appropriate assumptions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here