Time consistency for scalar multivariate risk measures

11 Oct 2018  ·  Zachary Feinstein, Birgit Rudloff ·

In this paper we present results on dynamic multivariate scalar risk measures, which arise in markets with transaction costs and systemic risk. Dual representations of such risk measures are presented. These are then used to obtain the main results of this paper on time consistency; namely, an equivalent recursive formulation of multivariate scalar risk measures to multiportfolio time consistency. We are motivated to study time consistency of multivariate scalar risk measures as the superhedging risk measure in markets with transaction costs (with a single eligible asset) (Jouini and Kallal (1995), Roux and Zastawniak (2016), Loehne and Rudloff (2014)) does not satisfy the usual scalar concept of time consistency. In fact, as demonstrated in (Feinstein and Rudloff (2021)), scalar risk measures with the same scalarization weight at all times would not be time consistent in general. The deduced recursive relation for the scalarizations of multiportfolio time consistent set-valued risk measures provided in this paper requires consideration of the entire family of scalarizations. In this way we develop a direct notion of a "moving scalarization" for scalar time consistency that corroborates recent research on scalarizations of dynamic multi-objective problems (Karnam, Ma, and Zhang (2017), Kovacova and Rudloff (2021)).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here