Time Adaptive Recurrent Neural Network

CVPR 2021  ·  Anil Kag, Venkatesh Saligrama ·

We propose a learning method that, dynamically modifies the time-constants of the continuous-time counterpart of a vanilla RNN. The time-constants are modified based on the current observation and hidden state. Our proposal overcomes the issues of RNN trainability, by mitigating exploding and vanishing gradient phenomena based on placing novel constraints on the parameter space, and by suppressing noise in inputs based on pondering over informative inputs to strengthen their contribution in the hidden state. As a result, our method is computationally efficient overcoming overheads of many existing methods that also attempt to improve RNN training. Our RNNs, despite being simpler and having light memory footprint, shows competitive performance against standard LSTMs and baseline RNN models on many benchmark datasets including those that require long-term memory.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here