TIER: Text-Image Entropy Regularization for CLIP-style models

13 Dec 2022  ·  Anil Palepu, Andrew L. Beam ·

In this paper, we introduce a novel regularization scheme on contrastive language-image pre-trained (CLIP) medical vision models. Our approach is based on the observation that on many medical imaging tasks text tokens should only describe a small number of image regions and, likewise, each image region should correspond to only a few text tokens. In CLIP-style models, this implies that text-token embeddings should have high similarity to only a small number of image-patch embeddings for a given image-text pair. We formalize this observation using a novel regularization scheme that penalizes the entropy of the text-token to image-patch similarity scores. We qualitatively and quantitatively demonstrate that the proposed regularization scheme shrinks most of the pairwise text-token and image-patch similarity scores towards zero, thus achieving the desired effect. We demonstrate the promise of our approach in an important medical context, chest x-rays, where this underlying sparsity hypothesis naturally arises. Using our proposed approach, we achieve state of the art (SOTA) average zero-shot performance on the CheXpert and Padchest chest x-ray datasets, outperforming an unregularized version of the model and several recently published self-supervised models.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here