Through Fog High-Resolution Imaging Using Millimeter Wave Radar

This paper demonstrates high-resolution imaging using millimeter Wave (mmWave) radars that can function even in dense fog. We leverage the fact that mmWave signals have favorable propagation characteristics in low visibility conditions, unlike optical sensors like cameras and LiDARs which cannot penetrate through dense fog. Millimeter-wave radars, however, suffer from very low resolution, specularity, and noise artifacts. We introduce HawkEye, a system that leverages a cGAN architecture to recover high-frequency shapes from raw low-resolution mmWave heat-maps. We propose a novel design that addresses challenges specific to the structure and nature of the radar signals involved. We also develop a data synthesizer to aid with large-scale dataset generation for training. We implement our system on a custom-built mmWave radar platform and demonstrate performance improvement over both standard mmWave radars and other competitive baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here