Tensor network simulation of chains of non-Markovian open quantum systems

14 Jan 2022  ·  Gerald E. Fux, Dainius Kilda, Brendon W. Lovett, Jonathan Keeling ·

We introduce a general numerical method to compute dynamics and multi-time correlations of chains of quantum systems, where each system may couple strongly to a structured environment. The method combines the process tensor formalism for general (possibly non-Markovian) open quantum systems with time evolving block decimation (TEBD) for 1D chains. It systematically reduces the numerical complexity originating from system-environment correlations before integrating them into the full many-body problem, making a wide range of applications numerically feasible. We illustrate the power of this method by studying two examples. First, we study the thermalization of individual spins of a short XYZ Heisenberg chain with strongly coupled thermal leads. Our results confirm the complete thermalization of the chain when coupled to a single bath, and reveal distinct effective temperatures in low, mid, and high frequency regimes when the chain is placed between a hot and a cold bath. Second, we study the dynamics of diffusion in an longer XY chain, when each site couples to its own bath.

PDF Abstract

Categories


Quantum Physics Mesoscale and Nanoscale Physics