One-Shot Federated Learning: Theoretical Limits and Algorithms to Achieve Them

12 May 2019  ·  Saber Salehkaleybar, Arsalan Sharif-Nassab, S. Jamaloddin Golestani ·

We consider distributed statistical optimization in one-shot setting, where there are $m$ machines each observing $n$ i.i.d. samples. Based on its observed samples, each machine sends a $B$-bit-long message to a server. The server then collects messages from all machines, and estimates a parameter that minimizes an expected convex loss function. We investigate the impact of communication constraint, $B$, on the expected error and derive a tight lower bound on the error achievable by any algorithm. We then propose an estimator, which we call Multi-Resolution Estimator (MRE), whose expected error (when $B\ge\log mn$) meets the aforementioned lower bound up to poly-logarithmic factors, and is thereby order optimal. We also address the problem of learning under tiny communication budget, and present lower and upper error bounds when $B$ is a constant. The expected error of MRE, unlike existing algorithms, tends to zero as the number of machines ($m$) goes to infinity, even when the number of samples per machine ($n$) remains upper bounded by a constant. This property of the MRE algorithm makes it applicable in new machine learning paradigms where $m$ is much larger than $n$.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here