Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks

18 Oct 2022  ·  Louis Schatzki, Martin Larocca, Quynh T. Nguyen, Frederic Sauvage, M. Cerezo ·

Despite the great promise of quantum machine learning models, there are several challenges one must overcome before unlocking their full potential. For instance, models based on quantum neural networks (QNNs) can suffer from excessive local minima and barren plateaus in their training landscapes. Recently, the nascent field of geometric quantum machine learning (GQML) has emerged as a potential solution to some of those issues. The key insight of GQML is that one should design architectures, such as equivariant QNNs, encoding the symmetries of the problem at hand. Here, we focus on problems with permutation symmetry (i.e., the group of symmetry $S_n$), and show how to build $S_n$-equivariant QNNs. We provide an analytical study of their performance, proving that they do not suffer from barren plateaus, quickly reach overparametrization, and generalize well from small amounts of data. To verify our results, we perform numerical simulations for a graph state classification task. Our work provides the first theoretical guarantees for equivariant QNNs, thus indicating the extreme power and potential of GQML.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here