The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings

We examine a class of embeddings based on structured random matrices with orthogonal rows which can be applied in many machine learning applications including dimensionality reduction and kernel approximation. For both the Johnson-Lindenstrauss transform and the angular kernel, we show that we can select matrices yielding guaranteed improved performance in accuracy and/or speed compared to earlier methods. We introduce matrices with complex entries which give significant further accuracy improvement. We provide geometric and Markov chain-based perspectives to help understand the benefits, and empirical results which suggest that the approach is helpful in a wider range of applications.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here