The two-echelon routing problem with truck and drones

5 Apr 2020  ·  Minh Hoàng Hà, Lam Vu, Duy Manh Vu ·

In this paper, we study novel variants of the well-known two-echelon vehicle routing problem in which a truck works on the first echelon to transport parcels and a fleet of drones to intermediate depots while in the second echelon, the drones are used to deliver parcels from intermediate depots to customers. The objective is to minimize the completion time instead of the transportation cost as in classical 2-echelon vehicle routing problems. Depending on the context, a drone can be launched from the truck at an intermediate depot once (single trip drone) or several times (multiple trip drone). Mixed Integer Linear Programming (MILP) models are first proposed to formulate mathematically the problems and solve to optimality small-size instances. To handle larger instances, a metaheuristic based on the idea of Greedy Randomized Adaptive Search Procedure (GRASP) is introduced. Experimental results obtained on instances of different contexts are reported and analyzed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here