The Tracking Machine Learning challenge : Accuracy phase

14 Apr 2019  ·  Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Victor Estrade, Steven Farrell, Diogo R. Ferreira, Liam Finnie, Nicole Finnie, Cécile Germain, Vladimir Vava Gligorov, Tobias Golling, Sergey Gorbunov, Heather Gray, Isabelle Guyon, Mikhail Hushchyn, Vincenzo Innocente, Moritz Kiehn, Edward Moyse, Jean-Francois Puget, Yuval Reina, David Rousseau, Andreas Salzburger, Andrey Ustyuzhanin, Jean-Roch Vlimant, Johan Sokrates Wind, Trian Xylouris, Yetkin Yilmaz ·

This paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning challenge organized in 2018: the Tracking Machine Learning Challenge (TrackML). Its results were discussed at the competition session at the Neural Information Processing Systems conference (NeurIPS 2018). Given 100.000 points, the participants had to connect them into about 10.000 arcs of circles, following the trajectory of particles issued from very high energy proton collisions. The competition was difficult with a dozen front-runners well ahead of a pack. The single competition score is shown to be accurate and effective in selecting the best algorithms from the domain point of view. The competition has exposed a diversity of approaches, with various roles for Machine Learning, a number of which are discussed in the document

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here