The Termination Critic

26 Feb 2019  ·  Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, Doina Precup ·

In this work, we consider the problem of autonomously discovering behavioral abstractions, or options, for reinforcement learning agents. We propose an algorithm that focuses on the termination condition, as opposed to -- as is common -- the policy. The termination condition is usually trained to optimize a control objective: an option ought to terminate if another has better value. We offer a different, information-theoretic perspective, and propose that terminations should focus instead on the compressibility of the option's encoding -- arguably a key reason for using abstractions. To achieve this algorithmically, we leverage the classical options framework, and learn the option transition model as a "critic" for the termination condition. Using this model, we derive gradients that optimize the desired criteria. We show that the resulting options are non-trivial, intuitively meaningful, and useful for learning and planning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here