The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences

19 Sep 2016  ·  Yuxin Chen, Emmanuel Candes ·

Various applications involve assigning discrete label values to a collection of objects based on some pairwise noisy data. Due to the discrete---and hence nonconvex---structure of the problem, computing the optimal assignment (e.g.~maximum likelihood assignment) becomes intractable at first sight. This paper makes progress towards efficient computation by focusing on a concrete joint alignment problem---that is, the problem of recovering $n$ discrete variables $x_i \in \{1,\cdots, m\}$, $1\leq i\leq n$ given noisy observations of their modulo differences $\{x_i - x_j~\mathsf{mod}~m\}$. We propose a low-complexity and model-free procedure, which operates in a lifted space by representing distinct label values in orthogonal directions, and which attempts to optimize quadratic functions over hypercubes. Starting with a first guess computed via a spectral method, the algorithm successively refines the iterates via projected power iterations. We prove that for a broad class of statistical models, the proposed projected power method makes no error---and hence converges to the maximum likelihood estimate---in a suitable regime. Numerical experiments have been carried out on both synthetic and real data to demonstrate the practicality of our algorithm. We expect this algorithmic framework to be effective for a broad range of discrete assignment problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here