The Mathematics of Text Structure

6 Apr 2019  ·  Bob Coecke ·

In previous work we gave a mathematical foundation, referred to as DisCoCat, for how words interact in a sentence in order to produce the meaning of that sentence. To do so, we exploited the perfect structural match of grammar and categories of meaning spaces. Here, we give a mathematical foundation, referred to as DisCoCirc, for how sentences interact in texts in order to produce the meaning of that text. First we revisit DisCoCat. While in DisCoCat all meanings are fixed as states (i.e. have no input), in DisCoCirc word meanings correspond to a type, or system, and the states of this system can evolve. Sentences are gates within a circuit which update the variable meanings of those words. Like in DisCoCat, word meanings can live in a variety of spaces e.g. propositional, vectorial, or cognitive. The compositional structure are string diagrams representing information flows, and an entire text yields a single string diagram in which word meanings lift to the meaning of an entire text. While the developments in this paper are independent of a physical embodiment (cf. classical vs. quantum computing), both the compositional formalism and suggested meaning model are highly quantum-inspired, and implementation on a quantum computer would come with a range of benefits. We also praise Jim Lambek for his role in mathematical linguistics in general, and the development of the DisCo program more specifically.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here