The Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escaping, and Network Embedding

8 Feb 2024  ·  Zhengqing Wu, Berfin Simsek, Francois Ged ·

In this paper, we investigate the loss landscape of one-hidden-layer neural networks with ReLU-like activation functions trained with the empirical squared loss. As the activation function is non-differentiable, it is so far unclear how to completely characterize the stationary points. We propose the conditions for stationarity that apply to both non-differentiable and differentiable cases. Additionally, we show that, if a stationary point does not contain "escape neurons", which are defined with first-order conditions, then it must be a local minimum. Moreover, for the scalar-output case, the presence of an escape neuron guarantees that the stationary point is not a local minimum. Our results refine the description of the saddle-to-saddle training process starting from infinitesimally small (vanishing) initialization for shallow ReLU-like networks, linking saddle escaping directly with the parameter changes of escape neurons. Moreover, we are also able to fully discuss how network embedding, which is to instantiate a narrower network within a wider network, reshapes the stationary points.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here