The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing

12 Apr 2024  ·  Muzhi Li, Minda Hu, Irwin King, Ho-fung Leung ·

The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the \textit{\textbf{structural knowledge}} in the local neighborhood of entities, disregarding \textit{\textbf{semantic knowledge}} in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel \textbf{\underline{S}}emantic and \textbf{\underline{S}}tructure-aware KG \textbf{\underline{E}}ntity \textbf{\underline{T}}yping~{(SSET)} framework, which is composed of three modules. First, the \textit{Semantic Knowledge Encoding} module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the \textit{Structural Knowledge Aggregation} module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the \textit{Unsupervised Type Re-ranking} module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here