The inherent goodness of well educated intelligence

9 Jan 2024  ·  Michael E. Glinsky ·

This paper will examine what makes a being intelligent, whether that be a biological being or an artificial silicon being on a computer. Special attention will be paid to the being having the ability to characterize and control a collective system of many identical conservative sub-systems conservatively interacting. The essence of intelligence will be found to be the golden rule -- "the collective acts as one" or "knowing the global consequences of local actions". The flow of the collective is a small set of twinkling textures, that are governed by a puppeteer who is pulling a small number of strings according to a geodesic motion of least action, determined by the symmetries. Controlling collective conservative systems is difficult and has historically been done by adding significant viscosity to the system to stabilize the desirable meta stable equilibriums of maximum performance, but it degrades or destroys them in the process. There is an alternative. Once the optimum twinkling textures of the meta stable equilibriums are identified, the collective system can be moved to the optimum twinkling textures, then quickly vibrated according to the textures so that the collective system remains at the meta stable equilibrium. Well educated intelligence knows the global consequences of its local actions so that it will not take short term actions that will lead to poor long term outcomes. In contrast, trained intelligence or trained stupidity will optimize its short term actions, leading to poor long term outcomes. Well educated intelligence is inherently good, but trained stupidity is inherently evil and should be feared. Particular attention is paid to the control and optimization of economic and social collectives. These new results are also applicable to physical collectives such as fields, fluids and plasmas.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here