The Impact of Batch Learning in Stochastic Linear Bandits

14 Feb 2022  ·  Danil Provodin, Pratik Gajane, Mykola Pechenizkiy, Maurits Kaptein ·

We consider a special case of bandit problems, named batched bandits, in which an agent observes batches of responses over a certain time period. Unlike previous work, we consider a more practically relevant batch-centric scenario of batch learning. That is to say, we provide a policy-agnostic regret analysis and demonstrate upper and lower bounds for the regret of a candidate policy. Our main theoretical results show that the impact of batch learning is a multiplicative factor of batch size relative to the regret of online behavior. Primarily, we study two settings of the stochastic linear bandits: bandits with finitely and infinitely many arms. While the regret bounds are the same for both settings, the former setting results hold under milder assumptions. Also, we provide a more robust result for the 2-armed bandit problem as an important insight. Finally, we demonstrate the consistency of theoretical results by conducting empirical experiments and reflect on optimal batch size choice.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here