The Extended Littlestone's Dimension for Learning with Mistakes and Abstentions

21 Apr 2016  ·  Chicheng Zhang, Kamalika Chaudhuri ·

This paper studies classification with an abstention option in the online setting. In this setting, examples arrive sequentially, the learner is given a hypothesis class $\mathcal H$, and the goal of the learner is to either predict a label on each example or abstain, while ensuring that it does not make more than a pre-specified number of mistakes when it does predict a label. Previous work on this problem has left open two main challenges. First, not much is known about the optimality of algorithms, and in particular, about what an optimal algorithmic strategy is for any individual hypothesis class. Second, while the realizable case has been studied, the more realistic non-realizable scenario is not well-understood. In this paper, we address both challenges. First, we provide a novel measure, called the Extended Littlestone's Dimension, which captures the number of abstentions needed to ensure a certain number of mistakes. Second, we explore the non-realizable case, and provide upper and lower bounds on the number of abstentions required by an algorithm to guarantee a specified number of mistakes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here