The Evolutionary Dynamics of Independent Learning Agents in Population Games

29 Jun 2020  ·  Shuyue Hu, Chin-Wing Leung, Ho-fung Leung, Harold Soh ·

Understanding the evolutionary dynamics of reinforcement learning under multi-agent settings has long remained an open problem. While previous works primarily focus on 2-player games, we consider population games, which model the strategic interactions of a large population comprising small and anonymous agents. This paper presents a formal relation between stochastic processes and the dynamics of independent learning agents who reason based on the reward signals. Using a master equation approach, we provide a novel unified framework for characterising population dynamics via a single partial differential equation (Theorem 1). Through a case study involving Cross learning agents, we illustrate that Theorem 1 allows us to identify qualitatively different evolutionary dynamics, to analyse steady states, and to gain insights into the expected behaviour of a population. In addition, we present extensive experimental results validating that Theorem 1 holds for a variety of learning methods and population games.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here