Computational-Statistical Gaps in Gaussian Single-Index Models

8 Mar 2024  ·  Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, Joan Bruna ·

Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime. While the information-theoretic sample complexity to recover the hidden direction is linear in the dimension $d$, we show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $\Omega(d^{k^\star/2})$ samples, where $k^\star$ is a "generative" exponent associated with the model that we explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by establishing matching upper bounds using a partial-trace algorithm. Therefore, our results provide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class) whenever $k^\star>2$. To complete the study, we provide examples of smooth and Lipschitz deterministic target functions with arbitrarily large generative exponents $k^\star$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here