The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks

6 Feb 2024  ·  Andrea Bonfanti, Giuseppe Bruno, Cristina Cipriani ·

The Neural Tangent Kernel (NTK) viewpoint represents a valuable approach to examine the training dynamics of Physics-Informed Neural Networks (PINNs) in the infinite width limit. We leverage this perspective and focus on the case of nonlinear Partial Differential Equations (PDEs) solved by PINNs. We provide theoretical results on the different behaviors of the NTK depending on the linearity of the differential operator. Moreover, inspired by our theoretical results, we emphasize the advantage of employing second-order methods for training PINNs. Additionally, we explore the convergence capabilities of second-order methods and address the challenges of spectral bias and slow convergence. Every theoretical result is supported by numerical examples with both linear and nonlinear PDEs, and we validate our training method on benchmark test cases.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods