The Capacity of Multi-user Private Information Retrieval for Computationally Limited Databases

18 Sep 2020  ·  William Barnhart, Zhi Tian ·

We present a private information retrieval (PIR) scheme that allows a user to retrieve a single message from an arbitrary number of databases by colluding with other users while hiding the desired message index. This scheme is of particular significance when there is only one accessible database -- a special case that turns out to be more challenging for PIR in the multi-database case. The upper bound for privacy-preserving capacity for these scenarios is $C=(1+\frac{1}{S}+\cdots+\frac{1}{S^{K-1}})^{-1}$, where $K$ is the number of messages and $S$ represents the quantity of information sources such as $S=N+U-1$ for $U$ users and $N$ databases. We show that the proposed information retrieval scheme attains the capacity bound even when only one database is present, which differs from most existing works that hinge on the access to multiple databases in order to hide user privacy. Unlike the multi-database case, this scheme capitalizes on the inability for a database to cross-reference queries made by multiple users due to computational complexity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here