The Canonical Distortion Measure for Vector Quantization and Function Approximation

14 Nov 2019  ·  Jonathan Baxter ·

To measure the quality of a set of vector quantization points a means of measuring the distance between a random point and its quantization is required. Common metrics such as the {\em Hamming} and {\em Euclidean} metrics, while mathematically simple, are inappropriate for comparing natural signals such as speech or images. In this paper it is shown how an {\em environment} of functions on an input space $X$ induces a {\em canonical distortion measure} (CDM) on X. The depiction 'canonical" is justified because it is shown that optimizing the reconstruction error of X with respect to the CDM gives rise to optimal piecewise constant approximations of the functions in the environment. The CDM is calculated in closed form for several different function classes. An algorithm for training neural networks to implement the CDM is presented along with some encouraging experimental results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here