Testing geometric representation hypotheses from simulated place cell recordings

16 Nov 2022  ·  Thibault Niederhauser, Adam Lester, Nina Miolane, Khanh Dao Duc, Manu S. Madhav ·

Hippocampal place cells can encode spatial locations of an animal in physical or task-relevant spaces. We simulated place cell populations that encoded either Euclidean- or graph-based positions of a rat navigating to goal nodes in a maze with a graph topology, and used manifold learning methods such as UMAP and Autoencoders (AE) to analyze these neural population activities. The structure of the latent spaces learned by the AE reflects their true geometric structure, while PCA fails to do so and UMAP is less robust to noise. Our results support future applications of AE architectures to decipher the geometry of spatial encoding in the brain.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


AE PCA