Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes

28 Oct 2019  ·  Greg Yang ·

Wide neural networks with random weights and biases are Gaussian processes, as originally observed by Neal (1995) and more recently by Lee et al. (2018) and Matthews et al. (2018) for deep fully-connected networks, as well as by Novak et al. (2019) and Garriga-Alonso et al. (2019) for deep convolutional networks. We show that this Neural Network-Gaussian Process correspondence surprisingly extends to all modern feedforward or recurrent neural networks composed of multilayer perceptron, RNNs (e.g. LSTMs, GRUs), (nD or graph) convolution, pooling, skip connection, attention, batch normalization, and/or layer normalization. More generally, we introduce a language for expressing neural network computations, and our result encompasses all such expressible neural networks. This work serves as a tutorial on the *tensor programs* technique formulated in Yang (2019) and elucidates the Gaussian Process results obtained there. We provide open-source implementations of the Gaussian Process kernels of simple RNN, GRU, transformer, and batchnorm+ReLU network at github.com/thegregyang/GP4A.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods