Tensor network to learn the wavefunction of data

15 Nov 2021  ·  Anatoly Dymarsky, Kirill Pavlenko ·

How many different ways are there to handwrite digit 3? To quantify this question imagine extending a dataset of handwritten digits MNIST by sampling additional images until they start repeating. We call the collection of all resulting images of digit 3 the "full set." To study the properties of the full set we introduce a tensor network architecture which simultaneously accomplishes both classification (discrimination) and sampling tasks. Qualitatively, our trained network represents the indicator function of the full set. It therefore can be used to characterize the data itself. We illustrate that by studying the full sets associated with the digits of MNIST. Using quantum mechanical interpretation of our network we characterize the full set by calculating its entanglement entropy. We also study its geometric properties such as mean Hamming distance, effective dimension, and size. The latter answers the question above -- the total number of black and white threes written MNIST style is $2^{72}$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here