Tensor decomposition for minimization of E2E SLU model toward on-device processing

Spoken Language Understanding (SLU) is a critical speech recognition application and is often deployed on edge devices. Consequently, on-device processing plays a significant role in the practical implementation of SLU. This paper focuses on the end-to-end (E2E) SLU model due to its small latency property, unlike a cascade system, and aims to minimize the computational cost. We reduce the model size by applying tensor decomposition to the Conformer and E-Branchformer architectures used in our E2E SLU models. We propose to apply singular value decomposition to linear layers and the Tucker decomposition to convolution layers, respectively. We also compare COMP/PARFAC decomposition and Tensor-Train decomposition to the Tucker decomposition. Since the E2E model is represented by a single neural network, our tensor decomposition can flexibly control the number of parameters without changing feature dimensions. On the STOP dataset, we achieved 70.9% exact match accuracy under the tight constraint of only 15 million parameters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods