State-Dependent Temperature Control for Langevin Diffusions

15 Nov 2020  ·  Xuefeng Gao, Zuo Quan Xu, Xun Yu Zhou ·

We study the temperature control problem for Langevin diffusions in the context of non-convex optimization. The classical optimal control of such a problem is of the bang-bang type, which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed control formulation incorporating randomization of the temperature control and regularizing its entropy. We derive a state-dependent, truncated exponential distribution, which can be used to sample temperatures in a Langevin algorithm, in terms of the solution to an HJB partial differential equation. We carry out a numerical experiment on a one-dimensional baseline example, in which the HJB equation can be easily solved, to compare the performance of the algorithm with three other available algorithms in search of a global optimum.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here