TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation

15 Feb 2024  ·  Yaoxiang Wang, Zhiyong Wu, Junfeng Yao, Jinsong Su ·

The emergence of Large Language Models (LLMs) like ChatGPT has inspired the development of LLM-based agents capable of addressing complex, real-world tasks. However, these agents often struggle during task execution due to methodological constraints, such as error propagation and limited adaptability. To address this issue, we propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG). This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent, thereby enhancing adaptability in diverse and unpredictable real-world tasks. Simultaneously, existing benchmarks often lack the granularity needed to evaluate incremental progress in complex, multi-step tasks. In response, we introduce ItineraryBench in the context of travel planning, featuring interconnected, progressively complex tasks with a fine-grained evaluation system. ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity. Our experimental results reveal that TDAG significantly outperforms established baselines, showcasing its superior adaptability and context awareness in complex task scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here