TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection

ICCV 2019 Kyle MinJason J. Corso

TASED-Net is a 3D fully-convolutional network architecture for video saliency detection. It consists of two building blocks: first, the encoder network extracts low-resolution spatiotemporal features from an input clip of several consecutive frames, and then the following prediction network decodes the encoded features spatially while aggregating all the temporal information... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet