Tackling the Problem of Large Deformations in Deep Learning Based Medical Image Registration Using Displacement Embeddings

MIDL 2019  ·  Lasse Hansen, Mattias P. Heinrich ·

Though, deep learning based medical image registration is currently starting to show promising advances, often, it still fells behind conventional frameworks in terms of registration accuracy. This is especially true for applications where large deformations exist, such as registration of interpatient abdominal MRI or inhale-to-exhale CT lung registration. Most current works use U-Net-like architectures to predict dense displacement fields from the input images in different supervised and unsupervised settings. We believe that the U-Net architecture itself to some level limits the ability to predict large deformations (even when using multilevel strategies) and therefore propose a novel approach, where the input images are mapped into a displacement space and final registrations are reconstructed from this embedding. Experiments on inhale-to-exhale CT lung registration demonstrate the ability of our architecture to predict large deformations in a single forward path through our network (leading to errors below 2 mm).

PDF Abstract MIDL 2019 PDF MIDL 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods