Synthetic to Real Adaptation with Generative Correlation Alignment Networks

19 Jan 2017  ·  Xingchao Peng, Kate Saenko ·

Synthetic images rendered from 3D CAD models are useful for augmenting training data for object recognition algorithms. However, the generated images are non-photorealistic and do not match real image statistics. This leads to a large domain discrepancy, causing models trained on synthetic data to perform poorly on real domains. Recent work has shown the great potential of deep convolutional neural networks to generate realistic images, but has not utilized generative models to address synthetic-to-real domain adaptation. In this work, we propose a Deep Generative Correlation Alignment Network (DGCAN) to synthesize images using a novel domain adaption algorithm. DGCAN leverages a shape preserving loss and a low level statistic matching loss to minimize the domain discrepancy between synthetic and real images in deep feature space. Experimentally, we show training off-the-shelf classifiers on the newly generated data can significantly boost performance when testing on the real image domains (PASCAL VOC 2007 benchmark and Office dataset), improving upon several existing methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here