Synthetic Image Augmentation for Damage Region Segmentation using Conditional GAN with Structure Edge

Recently, social infrastructure is aging, and its predictive maintenance has become important issue. To monitor the state of infrastructures, bridge inspection is performed by human eye or bay drone. For diagnosis, primary damage region are recognized for repair targets. But, the degradation at worse level has rarely occurred, and the damage regions of interest are often narrow, so their ratio per image is extremely small pixel count, as experienced 0.6 to 1.5 percent. The both scarcity and imbalance property on the damage region of interest influences limited performance to detect damage. If additional data set of damaged images can be generated, it may enable to improve accuracy in damage region segmentation algorithm. We propose a synthetic augmentation procedure to generate damaged images using the image-to-image translation mapping from the tri-categorical label that consists the both semantic label and structure edge to the real damage image. We use the Sobel gradient operator to enhance structure edge. Actually, in case of bridge inspection, we apply the RC concrete structure with the number of 208 eye-inspection photos that rebar exposure have occurred, which are prepared 840 block images with size 224 by 224. We applied popular per-pixel segmentation algorithms such as the FCN-8s, SegNet, and DeepLabv3+Xception-v2. We demonstrates that re-training a data set added with synthetic augmentation procedure make higher accuracy based on indices the mean IoU, damage region of interest IoU, precision, recall, BF score when we predict test images.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods