Syndrome-Enabled Unsupervised Learning for Neural Network-Based Polar Decoder and Jointly Optimized Blind Equalizer

6 Jan 2020  ·  Chieh-Fang Teng, Yen-Liang Chen ·

Recently, the syndrome loss has been proposed to achieve "unsupervised learning" for neural network-based BCH/LDPC decoders. However, the design approach cannot be applied to polar codes directly and has not been evaluated under varying channels. In this work, we propose two modified syndrome losses to facilitate unsupervised learning in the receiver. Then, we first apply it to a neural network-based belief propagation (BP) polar decoder. With the aid of CRC-enabled syndrome loss, the BP decoder can even outperform conventional supervised learning methods in terms of block error rate. Secondly, we propose a jointly optimized syndrome-enabled blind equalizer, which can avoid the transmission of training sequences and achieve global optimum with 1.3 dB gain over non-blind minimum mean square error (MMSE) equalizer.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here