Symbolically integrating tensor networks over various random tensors by the second version of Python RTNI

3 Sep 2023  ·  Motohisa Fukuda ·

We are upgrading the Python-version of RTNI, which symbolically integrates tensor networks over the Haar-distributed unitary matrices. Now, PyRTNI2 can treat the Haar-distributed orthogonal matrices and the real and complex normal Gaussian tensors as well. Moreover, it can export tensor networks in the format of TensorNetwork so that one can make further calculations with concrete tensors, even for low dimensions, where the Weingarten functions differ from the ones for high dimensions. The tutorial notebooks are found at GitHub: https://github.com/MotohisaFukuda/PyRTNI2. In this paper, we explain maths behind the program and show what kind of tensor network calculations can be made with it. For the former, we interpret the element-wise moment calculus of the above random matrices and tensors in terms of tensor network diagrams, and argue that the view is natural, relating delta functions in the calculus to edges in tensor network diagrams.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here