Sugarcane Health Monitoring With Satellite Spectroscopy and Machine Learning: A Review

13 Feb 2024  ·  Ethan Kane Waters, Carla Chia-Ming Chen, Mostafa Rahimi Azghadi ·

Research into large-scale crop monitoring has flourished due to increased accessibility to satellite imagery. This review delves into previously unexplored and under-explored areas in sugarcane health monitoring and disease/pest detection using satellite-based spectroscopy and Machine Learning (ML). It discusses key considerations in system development, including relevant satellites, vegetation indices, ML methods, factors influencing sugarcane reflectance, optimal growth conditions, common diseases, and traditional detection methods. Many studies highlight how factors like crop age, soil type, viewing angle, water content, recent weather patterns, and sugarcane variety can impact spectral reflectance, affecting the accuracy of health assessments via spectroscopy. However, these variables have not been fully considered in the literature. In addition, the current literature lacks comprehensive comparisons between ML techniques and vegetation indices. We address these gaps in this review. We discuss that, while current findings suggest the potential for an ML-driven satellite spectroscopy system for monitoring sugarcane health, further research is essential. This paper offers a comprehensive analysis of previous research to aid in unlocking this potential and advancing the development of an effective sugarcane health monitoring system using satellite technology.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here