Success-Rate Targeted Reinforcement Learning by Disorientation Penalty

1 Jan 2021  ·  Haichuan Gao, Zhile Yang, Tian Tan, Feng Chen ·

Current reinforcement learning generally uses discounted return as its learning objective. However, real-world tasks may often demand a high success rate, which can be quite different from optimizing rewards. In this paper, we explicitly formulate the success rate as an undiscounted form of return with {0, 1}-binary reward function. Unfortunately, applying traditional Bellman updates to value function learning can be problematic for learning undiscounted return, and thus not suitable for optimizing success rate. From our theoretical analysis, we discover that values across different states tend to converge to the same value, resulting in the agent wandering around those states without making any actual progress. This further leads to reduced learning efficiency and inability to complete a task in time. To combat the aforementioned issue, we propose a new method, which introduces Loop Penalty (LP) into value function learning, to penalize disoriented cycling behaviors in the agent's decision-making. We demonstrate the effectiveness of our proposed LP on three environments, including grid-world cliff-walking, Doom first-person navigation and robot arm control, and compare our method with Q-learning, Monte-Carlo and Proximal Policy Optimization (PPO). Empirically, LP improves the convergence of training and achieves a higher success rate.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here