Subject-specific quantitative susceptibility mapping using patch based deep image priors

10 Oct 2022  ·  Arvind Balachandrasekaran, Davood Karimi, Camilo Jaimes, Ali Gholipour ·

Quantitative Susceptibility Mapping is a parametric imaging technique to estimate the magnetic susceptibilities of biological tissues from MRI phase measurements. This problem of estimating the susceptibility map is ill posed. Regularized recovery approaches exploiting signal properties such as smoothness and sparsity improve reconstructions, but suffer from over-smoothing artifacts. Deep learning approaches have shown great potential and generate maps with reduced artifacts. However, for reasonable reconstructions and network generalization, they require numerous training datasets resulting in increased data acquisition time. To overcome this issue, we proposed a subject-specific, patch-based, unsupervised learning algorithm to estimate the susceptibility map. We make the problem well-posed by exploiting the redundancies across the patches of the map using a deep convolutional neural network. We formulated the recovery of the susceptibility map as a regularized optimization problem and adopted an alternating minimization strategy to solve it. We tested the algorithm on a 3D invivo dataset and, qualitatively and quantitatively, demonstrated improved reconstructions over competing methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here