Subject-specific Deep Neural Networks for Count Data with High-cardinality Categorical Features

18 Oct 2023  ·  Hangbin Lee, IL DO HA, Changha Hwang, Youngjo Lee ·

There is a growing interest in subject-specific predictions using deep neural networks (DNNs) because real-world data often exhibit correlations, which has been typically overlooked in traditional DNN frameworks. In this paper, we propose a novel hierarchical likelihood learning framework for introducing gamma random effects into the Poisson DNN, so as to improve the prediction performance by capturing both nonlinear effects of input variables and subject-specific cluster effects. The proposed method simultaneously yields maximum likelihood estimators for fixed parameters and best unbiased predictors for random effects by optimizing a single objective function. This approach enables a fast end-to-end algorithm for handling clustered count data, which often involve high-cardinality categorical features. Furthermore, state-of-the-art network architectures can be easily implemented into the proposed h-likelihood framework. As an example, we introduce multi-head attention layer and a sparsemax function, which allows feature selection in high-dimensional settings. To enhance practical performance and learning efficiency, we present an adjustment procedure for prediction of random parameters and a method-of-moments estimator for pretraining of variance component. Various experiential studies and real data analyses confirm the advantages of our proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods