Structured State Space Decoder for Speech Recognition and Synthesis

31 Oct 2022  ·  Koichi Miyazaki, Masato Murata, Tomoki Koriyama ·

Automatic speech recognition (ASR) systems developed in recent years have shown promising results with self-attention models (e.g., Transformer and Conformer), which are replacing conventional recurrent neural networks. Meanwhile, a structured state space model (S4) has been recently proposed, producing promising results for various long-sequence modeling tasks, including raw speech classification. The S4 model can be trained in parallel, same as the Transformer model. In this study, we applied S4 as a decoder for ASR and text-to-speech (TTS) tasks by comparing it with the Transformer decoder. For the ASR task, our experimental results demonstrate that the proposed model achieves a competitive word error rate (WER) of 1.88%/4.25% on LibriSpeech test-clean/test-other set and a character error rate (CER) of 3.80%/2.63%/2.98% on the CSJ eval1/eval2/eval3 set. Furthermore, the proposed model is more robust than the standard Transformer model, particularly for long-form speech on both the datasets. For the TTS task, the proposed method outperforms the Transformer baseline.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods