Structured Prediction Energy Networks

19 Nov 2015  ·  David Belanger, Andrew McCallum ·

We introduce structured prediction energy networks (SPENs), a flexible framework for structured prediction. A deep architecture is used to define an energy function of candidate labels, and then predictions are produced by using back-propagation to iteratively optimize the energy with respect to the labels. This deep architecture captures dependencies between labels that would lead to intractable graphical models, and performs structure learning by automatically learning discriminative features of the structured output. One natural application of our technique is multi-label classification, which traditionally has required strict prior assumptions about the interactions between labels to ensure tractable learning and prediction. We are able to apply SPENs to multi-label problems with substantially larger label sets than previous applications of structured prediction, while modeling high-order interactions using minimal structural assumptions. Overall, deep learning provides remarkable tools for learning features of the inputs to a prediction problem, and this work extends these techniques to learning features of structured outputs. Our experiments provide impressive performance on a variety of benchmark multi-label classification tasks, demonstrate that our technique can be used to provide interpretable structure learning, and illuminate fundamental trade-offs between feed-forward and iterative structured prediction.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here