Structural Analysis of User Choices for Mobile App Recommendation

25 May 2016  ·  Liu Bin, Wu Yao, Gong Neil Zhenqiang, Wu Junjie, Xiong Hui, Ester Martin ·

Advances in smartphone technology have promoted the rapid development of mobile apps. However, the availability of a huge number of mobile apps in application stores has imposed the challenge of finding the right apps to meet the user needs. Indeed, there is a critical demand for personalized app recommendations. Along this line, there are opportunities and challenges posed by two unique characteristics of mobile apps. First, app markets have organized apps in a hierarchical taxonomy. Second, apps with similar functionalities are competing with each other. While there are a variety of approaches for mobile app recommendations, these approaches do not have a focus on dealing with these opportunities and challenges. To this end, in this paper, we provide a systematic study for addressing these challenges. Specifically, we develop a Structural User Choice Model (SUCM) to learn fine-grained user preferences by exploiting the hierarchical taxonomy of apps as well as the competitive relationships among apps. Moreover, we design an efficient learning algorithm to estimate the parameters for the SUCM model. Finally, we perform extensive experiments on a large app adoption data set collected from Google Play. The results show that SUCM consistently outperforms state-of-the-art top-N recommendation methods by a significant margin.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here