Strengthening Skeletal Action Recognizers via Leveraging Temporal Patterns

28 May 2022  ·  Zhenyue Qin, Pan Ji, Dongwoo Kim, Yang Liu, Saeed Anwar, Tom Gedeon ·

Skeleton sequences are compact and lightweight. Numerous skeleton-based action recognizers have been proposed to classify human behaviors. In this work, we aim to incorporate components that are compatible with existing models and further improve their accuracy. To this end, we design two temporal accessories: discrete cosine encoding (DCE) and chronological loss (CRL). DCE facilitates models to analyze motion patterns from the frequency domain and meanwhile alleviates the influence of signal noise. CRL guides networks to explicitly capture the sequence's chronological order. These two components consistently endow many recently-proposed action recognizers with accuracy boosts, achieving new state-of-the-art (SOTA) accuracy on two large datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here